SCHOOL OF COMPUTING
UNIVERSITY OF UTAH

Formal Analysis of GPU Programs
with Atomics via

Conflict-Directed Delay-Bounding

Wei-Fan Chiang

Joint work with Zvonimir Rakamaric¢, Ganesh Gopalakrishnan, and
Guodong Li

Motivation

* Use of GPUs growing!
— Extreme-Scale Computing, Mobile Devices,...
— High Compute Rates, Parallelism

* This work : how to design correct GPU programs?

Contrast between CPUs and GPUs

Example: Increment Array Elements

Fine-grained threads
scheduled to run like this:
tid=0,1, 2,3, ..

CPU program CUDA program
void inc_cpu(float™ a, __global__void inc_gpu(float* A, float b, int N) {
float b, int N) { int tid = blockldx.x* blockDiin.x2threadldx.x;
for (int idx = 0; idx<N; idx++) | if (tid < N)
alidx] = a[idx] + b; } A[tid] = A[tid] + b;
}

void main() {
..... voidmain() {
increment_cpu(a,b,N);} |

N);
}

dim3dimBlock (blocksize);
dim3dimGrid(ceil(N / (float)blocksize));
increment_gpu<<<dimGrid, dimBlock>>>(a, b,

GPU Computation Model

Grid
Block O Block n-1
Shared cesssees Shared
Memory Memory

Shared

Shared
Global Memory

Why is GPU Programming
Error-Prone?

 Multi-threaded and shared memory
* Thread synchronization.

— Barrier
— Atomic operations
e Safety properties:
— Races
— Assertions Our focus!

Why is GPU Programming
Error-Prone?

 Multi-threaded and shared memory
* Thread synchronization.

— Barrier T0O T1 T2
— Atomic operations l l l

* Safety properties: Barrier
— Races

— Assertions Our focus!

Why is GPU Programming
Error-Prone?

 Multi-threaded and shared memory
* Thread synchronization.

— Barrier
— Atomic operations

* Safety properties: e Barier

— Races l l l
— Assertions Our focus!

Why is GPU Programming
Error-Prone?

 Multi-threaded and shared memory
* Thread synchronization.

— Barrier
— Atomic operations atomic op. read v shli]
: write shli] v
e Safety properties:
— Races
— Assertions Our focus!

Why is GPU Programming
Error-Prone?

 Multi-threaded and shared memory

* Thread synchronization. :
preemption

— Barrier

— Atomic operations atomic op. read v shi]

, write shfi] v

e Safety properties:
— Races

— Assertions Our focus!

Schedules Are Equivalent in
Race-free programs (“DRF theorems”)

Block O Block 1
TO T1 T2 TO T1 T2

Barr O Barr 2

Barr 1 Barr 4

10

Schedules Are Equivalent in
Race-free programs (“DRF theorems”)

Block O Block 1
TO T1 T2 TO T1 T2

Barr O Barr 2

Barr 1 Barr 3

11

Schedules Are Equivalent in
Race-free programs (“DRF theorems”)

Block O Block 1
TO T1 T2 TO T1 T2

Barr O Barr 2

Barr 1 Barr 3

Sequential Scheduling [Attiya, 1994]

12

Race Detection by Single Schedule

Block 0 Block 1
TO T1 T2 TO T1 T2
2 Barr 0O Barr 2
0),
Barr 1l Barr 3

Explore ONE schedule is sufficient to detect races if there is any.
[Adve, 1991] [Li, PPOPP’12] ..

Race Pruning by Introducing Barriers

Block O Block 1
TO T1 T2 TO T1 T2

Barr O Barr 3

Barr 1 Barr 4

Barr 2 Barr 5

14

Barriers don’t prevent Inter-block Race

Block 0 Block 1
TO T1 T2 TO T1 T2
Barr 0O Barr 3
OX < -~ Race "> ®X
A 4 A 4 A 4 A 4 A 4 A 4
Barr 1l Barr 4
) A Race ~"[77 PY

Y Y Y —Barr2 9 9 Y —Barr5s

Needs of Critical Sections

Block 0 Block 1
TO T1 T2 TO T1 T2
Barr 0O

|Ck(X) 4-————-——caaf—|i—ci———> |Ck(X)

CS, CS,

ulk(x) ulk(x)

A 4 A 4 A 4
Barr 1l

ICk(y) é____caﬁﬂi_éf__ﬂ et 4 ICk(y)
CS, CS,
ulk(y) ulk(y)

Barr 2

Barr 3

Barr 4

Barr 5

Atomics Based Synchronization Example

Thread X

Ick(x)

CS,
ulk(x)

—v = tree[index];
if (v # LOCK) then
if (v ==atomicCAS(&tree[index], v, LOCK)) then
- assert(v # LOCK);

> Critical Section
—{ tree[index] = w; // w # LOCK

[Burtscher, 2011]

17

Atomics Based Synchronization Example

Thread X
Ick(x)
CS,
ulk(x)
—v = treelindex]; target expected new
) if (v # LOCK) then \ g
if (v ==atomicCAS(&tree[index], v, LOCK)) then
- assert(v # LOCK);

> Critical Section
—{ tree[index] = w; // w # LOCK

[Burtscher, 2011]

18

Number of Conflicts Could be Many!!

Block O Block 1
TO T1 T2 TO T1 T2
Barr 0 Barr 3
Ick(x) Ick(x) B Ick(x) Ick(x) B Ick(x) Ick(x)
CS, CS, CS, CS, CS, CS,
ulk(x) ulk(x) Ik(x) ulk(x) B ulk(x) B8 ulk(x)
Barr 1l Barr 4
Ick(y) Ick(y) Il Ick(y) Ick(y) Ick(y) Ick(y)
cs, @CS, cs,
qu(y) ulk(y) ®sulk(y) qu(y) qu(y) ulk(y)
Barr 2 Barr 5

Schedules are not equivalent!!

19

Schedule Exploration is Needed!

* Previous work

— Barrier based synchronization
* Explore one schedule.

e Qur work

— Barrier+atomic based synchronization
* Atomic operations introduce conflicts
* Explore multiple schedules.
* Need a good scheduling strategy.

Our Contributions

e Conflict-directed Delay-bounding (CD)
scheduling strategy.

— Checks safety properties with synchronizations
using barriers+atomic.

* Operational semantics of CD scheduling.

Without a good search strategy 2>

21

Intuitions of CD Scheduling

Block O Block 1
TO T1 T2 TO T1 T2

Barr O Barr 3

.X1________)‘Xz

v v v v v v

Barr 1 Barr 4

By, — 7T _>.Y2

Y Y Yy —Barr2 9 9 Y —Barr5s

By some schedule, we visit X; 2 X, and Y, 2 Y,.

Intuitions of CD Scheduling

Block O Block 1
TO T1 T2 TO T1 T2

Barr O Barr 3

X, € == ==~ T = "QX,

v v v v v v

Barr 1 Barr 4

Y. €~ 'HY,

Y Y Yy —Barr2 9 9 Y —Barr5s

Find another schedule that we visit X, 2 X;and Y, 2 Y,.

Background: Sequential Scheduling

Block 0 Block 1
TO T1 T2 TO T1 T2
- - Barr 0 r " " Barr 3
/,I /,I ', /,I /,I
/,/ /,/ .Xl /I /,/ /,/ ‘XZ
/ / / / /
/ /1 / /1 I/
Vi Vi __V ! vi Vi _ - -V
<---or- A Barrlk e ~ Barr4
i] 7]]
/ / e / /
/ // / // //
/,/ /, ' .Y'].’ /, .YZ
/ /) / /
! ! i / !
I I I I
. 4 Y __Barr?2 4 4 Y ___Barr5

Two Conflicts: X; 2 X, and Y, 2 Y,.

CD Scheduling

Block O Block 1
TO T1 T2 TO T1 T2
I I I I
/ / / /
/ / Delay / /
/’, /’, ’X1< ---------------- .¢:_:__ /’, 'XZ
/ / / =t
/ / 1 / ~~~'F~~
Vi Vi __ =V Vi Vi _ =V T
T Barr 1 e—/——F' - Barr 4
]]] \I
K ,/, v Del3y ,/, ,:"
/’, ¢~ /’——_>TY1 s .YZ //
/ / / / S
/ 1 / / ,/,
I -2 -
Vi v Vo - BarrZ v! — Barr 5

CD Schedule: X, =2 X,;and Y, 2 Y,.

High-Level View of CD Scheduling

No
O-delay
Schedule

Yes

Discard

Sequential
Schedules

N+1-delay
Schedules
N-delay Schedule

Schegy Generator

GKLEE:

. fli
Bug Conflict Detector & C.On. !Ct
Prioritizer

CUDA Simulator

26

O-delay Schedule: D =[]

Block O
TO T1 T2

- A Barr 0
/

Ad. v Y __Barr2

Block 1
TO T1 T2
M A A
;]]
! /, /,
/
»”° »”° 'Xz
/ /
I/ I/
Vi ZE,
€A A
]]
/ /
WY, 7 Y,
/ /
/1 1
Vi Vi v

Two Conflicts: X, =2 X,and Y, 2 Y,.

Barr 3

Barr 4

Barr 5

1-delay Schedule: D = [X,]

Block O Block 1
TO T1 T2 TO T1 T2
/ / / /
/ / D = [] / /
¢~ ¢ ’X]_ D i] [-/_:____ 2* ‘XZ
/ / / 1" 7~~-__
1 / | I Tl
vi Vi _-=V Vi Vi _ =¥V T~
=== A Barrl i ~ BarL4
]]) 1 1
/ / / / !
/ // // // Il
/f/ /’ .Yd_’ /’ .YZ /
/ / / / 4
! ! ! ! ot
I I I L
L - Y —Barr?2 4 Y Y--"Barr 5

A conflict is detected afterD=[]: Y, 2 Y,.

2-delay Schedule: D= X,, Y,]

Block 0 Block 1
TO T1 T2 TO T1 T2
/ / / /
R4 R4 D=1Y R4 R4
’X1 é--""'I"‘l‘-]----/-:____ s 'Xz
/ / / 17~~~
I TN~
vnl vnl - =V vnl VI _ o=V T
(——_—A—- Barrl 7’ A Bél’{4
1 I ! \
/ / v / ,'
/ -— / /]
,/ -’ ”—__>TY1 D—[]/,/ .YZ /I
/ / 4 / /’
/ / /1 R
] L Y--"Barr 2 A Y--"Barr 5

1-delay Schedule:D=1Y,]

Block O Block 1
TO T1 T2 TO T1 T2
- - Barr 0 ry - - Barr 3
]] I]]
/, /, I /, /,
/,/ /,/ .X]_ /I /,/ /,/ .XZ
/ / / / /
I/ I/ / I/ I/
\4 M // vi vi _ =V
= A Bartrk e—/——F' ~ Barr4
]] //]
/! ,/, Ky v =([] ,/,
/,/ ,° , TY]- 6-.-_,: .Y2
/ / ! rN,
| /1 I /1 \
I I |
L . Y __Barr?2 - ~Y __ Barr5

No conflict is detected after D =[]

Operational Semantics of CD

 Opsem of Scheduling given in our paper

— Different scheduling options (e.g. which thread to
run next) captured using uninterpreted functions

* Limitation of current CD approach:

— Does not address unfair CUDA runtimes
[Habermeir, Knapp, ESOP’13]

— Will be addressed in our future work

Example: Buggy N-body Simulation

 We planted the following bug in N-body code
[Burtscher, GCG’11]

1. v =tree[index];
(a long section of code here...)

if (v # LOCK) then
v = tree[index];
if (v ==atomicCAS(&tree[index], v, LOCK)) then
assert(v # LOCK);

A

Critical Section
6. tree[index] = w; // w # LOCK

Example: Buggy N-body Simulation

1.v = treeli];
2. if (v # LOCK)

3. v=tree[index];
4. if (v==CAS(...))
5. assert(v # LOCK);

CS

6. treel[index]=w;

FAIL! <

TO
v

Line2:v=0

-
-
-
-
-
-
-
-
o

Line 3: v =LOCK [¢

|

Line 4:

,._____
€

v =treeli] = LOCK | | (tree[i] == LOCK)

|

Line 5;

assert(v # LOCK)

Experiments: Bug-Free Benchmarks

No Heuristic Heuristic
Benchmark | LOC
schedules result # schedules result
aMin 20 431 | Verified 431 | Verified
aMinUpdate 35 653 | Verified 294 | \Verified
bintree 75 835 Verified 405 | Verified
TSP 130 114 | Verified 60 Verified
N-body 260 1195 | Verified 336 | Verified

Heuristic: pick “conditional atomic operation” conflicts (atomicCAS)
Errors are detected using user-provided assertions

3 blocks and 1 thread per block, delay-bound is 2

Running times ranging from 5 to 5000 seconds

Experiments: Buggy Benchmarks

No Heuristic Heuristic
Benchmark
schedules result # schedules result
aMin 107 | Bug caught 107 | Bug caught
aMinUpdate 6 | Bug caught 4 | Bug caught
bintree 14 | Bug caught 202 | Omission
TSP 4 | Bug caught 4 | Bug caught
N-body 448 | Bug caught 126 | Bug caught

35

Related Work

* Exploring Seq. Schedules under Race-Freedom

— General Concurrency Arena:
* Adve and Hill, '91
* “DRF theorems” in Java Memory Model studies

— GPU Arena:
* Liand Gopalakrishnan, FSE’'09
— Tool : “PUG”
 Li, Li, Gopalakrishnan, Rajan, Ghosh, PPoPP’12
— Tool : “GKLEE”

* Betts, Chong, Donaldson, Qadeer, and Thomson, SPLASH’12
— Tool : “GPUVerify”

Related Work

e Scheduling Methods:
— DPOR
* Flanagan and Godefroid, POPL'05

(http://users.soe.ucsc.edu/~cormac/)

— Sequentialization
* Lal and Reps, CAV'08
* Torre, Madhusudan, Parlato, CAV’09
* Nagafi, Hu, Rakamaric’, SPIN’10
— Delay Bounding: Emmi, Qadeer, Rakamaric’, POPL'11
* This work in comparison with above scheduling methods:

— Specializes bounding strategy to exploit warp-level sequential
scheduling (GKLEE, PPoPP’12)

— exploits conflicts (Sen, PLDI’08) to schedule around CUDA Atomics

http://users.soe.ucsc.edu/~cormac/

Summary

* Introduced Conflict-directed Delay-bounded
(CD) scheduling search strategy for handling
atomics

* Implemented in GKLEE
— Finds bugs in realistic benchmarks

* Heuristic for picking relevant conflicts

— Works well in practice

Future Work

* Extend CD scheduling to other contexts
— Hybrid programming
— Recursive calls in GPU kernels

e Address CUDA unfair runtimes

* Include other scheduling strategies such as
exploiting thread symmetry

Thanks.

Question?

The following slides are
backup slides.

Motivation

Hybrid Concurrent
Programs

Shared
Memory

Sync. by Sync. by Barriers
Barriers + atomic

Message
Passing

GPU Computation Model

Block i

Thread || Thread Thread

0 1 eee| w-1
Warp 0

> SIMD Lock-step Execution

Thread
n-1

Shared Memory

GPU Computation Model

Block i

Thread
0

Warp 0

1

Thread Thread

w-1

> We currently consider warp size is 1.

Thread
n-1

Shared Memory

About Handling Warps

Our current opsem is based on warp size =1

GPU (CUDA) programmers should not assume that
warp size is fixed to a certain number

Thus, assuming warp size = 1 in testing is a heuristic
for identifying most races/bugs

By incorporating the predicated form of CUDA
semantics proposed in GPUVerify [Donaldson,
2012], our opsem could also handle warps

Operational Semantics of CD

hd(D)
< Queue Head [| |] Queue Tail 2

X y

\

f>
Block O Block 1
Tor L[| T I ([Ty 1, To L || Tt bg [Ta2 I,
- <

* Blocks and Threads are organized as a queue of
gueues

* |, I,..areinstructions. “T,: I,” denotes that T,’s
current instruction is |

* hd(D) is the delay set of the current schedule,
which is a queue of instructions

Operational Semantics of CD

hd(D)
< Queue Head [| |] Queue Tail 2

X y

\

f>
Block O Block 1
Tor L[T I [Ty 1, To L || Tt bg [Ta2 I,
\- <

The 15t thread of the 15t block in the queue is
always first considered for scheduling

* Checkifl,isequal tol,

Operational Semantics of CD

hd(D)
< Queue Head [|] Queue Tail 2

y

f>
Block O Block 1
T || Ty o[T Ly To L || Tt bg [Ta2 I,
< <}

 Precondition: |, =1

d X

— Delay the execution of |,

e Each instruction in hd(D) is only delayed once

Operational Semantics of CD

hd(D)
< Queue Head | | Queue Tail 2

X y

\

f>
Block O Block 1
To: L[| T I [Ty I, To L || Tt bg [Ta2 I,
\- <

* Precondition: |, # |, and current instructions of
all threads in the queue head are barriers, i.e.,
|, =1, =1=Dbarrier

— Schedule all threads in the queue head block

Operational Semantics of CD

< Queue Head

Block O

X y

(>
[Tl: ([T, |
-

C

Block 1

hd(D)
BRI Queue Tail 2

\

Ty L, [TO: l,

* Precondition: |, #] andt

T, |

q

T,: Ir]
<

nere is a thread in the

gueue head whose current instruction is not a

barrier

— If I, is not a barrier, execute it
— Otherwise, the 15 thread of the 1% block (T,) yields

Related Work:
Other GPU Operational Semantics

* Modeling warp execution and divergence.

— Predicated execution model [Alastair and Qadeer,
2013].

* A GPU verification tool, GPUVerify, is based on this
semantics.

— Stack-based execution model [Habermaier and
Knapp, 2013].
* Our operational semantics models sequential
GPU simulation and scheduling strategies.

Comparison between CD Scheduling
and Other Strategies

* Vs. Dynamic Partial Order Reduction [Flanagan
and Godefroid, 2005]

— CD scheduling priorities schedule explorations
with detected conflicts.

e \/s. Race-directed [Sen, 2008]
— CD scheduling bounds the # of contexts.

* \/s. Context-bounded [Qadeer, 2005]

— CD scheduling decides preemption locations with
detected conflicts.

